首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   3篇
大气科学   7篇
地球物理   15篇
地质学   24篇
海洋学   3篇
天文学   6篇
自然地理   1篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2017年   5篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2012年   4篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   5篇
  2006年   6篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1998年   2篇
  1991年   2篇
  1984年   1篇
  1980年   1篇
  1978年   1篇
排序方式: 共有56条查询结果,搜索用时 31 毫秒
11.
Metamorphic textures in medium-grade (~500–550°C) metasedimentary rocks from the Erzgebirge give evidence of prograde rutile crystallization from ilmenite. Newly-crystallized grains occur as rutile-rich polycrystalline aggregates that pseudomorph the shape of the ilmenites. In-situ trace element data (EMP and SIMS) show that rutiles from the higher-grade samples record large scatter in Nb content and have Nb/Ti ratios higher than coexisting ilmenite. This behavior can be predicted using prograde rutile crystallization from ilmenite and indicates that rutiles are reequilibrating their chemistry with remaining ilmenites. On the contrary, rutiles from the lowest grade samples (~480°C) have Nb/Ti ratios that are similar to the ones in ilmenite. Hence, rutiles from these samples did not equilibrate their chemistry with remaining ilmenites. Our data suggest that temperature may be one of the main factors determining whether or not the elements are able to diffuse between the phases and, therefore, reequilibrate. Newly-crystallized rutiles yield temperatures (from ~500 to 630°C, Zr-in-rutile thermometry) that are in agreement with the metamorphic conditions previously determined for the studied rocks. In quartzites from the medium-grade domain (~530°C), inherited detrital rutile grains are detected. They are identified by their distinct chemical composition (high Zr and Nb contents) and textures (single grains surrounded by fine grained ilmenites). Preliminary calculation, based on grain size distribution of rutile in medium-grade metapelites and quartzites that occur in the studied area, show that rutiles derived from quartzites can be anticipated to dominate the detrital rutile population, even if quartzites are a minor component of the exposure.  相似文献   
12.
Knowledge of the in situ stress state is of key importance for rock engineering. We inform the reader about the World Stress Map (WSM) database and its application to rock mechanics and rock engineering purpose, and in particular the orientation of maximum horizontal stress. We discuss the WSM and the quality ranking system of stress orientation data. We show one example of discrete-measured and computed-smoothed stress orientations from central and northern Europe with respect to relative plate velocity trajectories. We give first insights into ongoing development of a second, more Quantitative World Stress Map database which compiles globally rock-type specific stress magnitudes versus depth. We discuss the vertical stress component, and the lateral stress coefficient versus depth for different rock types. We display stress magnitudes in 2D and 3D stress space, and investigate stress ratios in relation to depth, lithology and tectonic faulting regime.  相似文献   
13.
Surface exposure dating of carbonate rocks using cosmogenic 10Be is problematic. We have performed step-wise leaching of calcite-rich samples in order to investigate the reasons for this. Results on different grain size fractions clearly indicate the source of atmospheric 10Be is clay. We demonstrate that partial-leaching procedures, which result in moderate pH levels will not release 10Be (in-situ produced or atmospheric) due to the instant re-absorption on grain surfaces. By contrast, under strongly acidic conditions, all absorbed 10Be is leached from aluminosilicates giving abnormally high 10Be concentrations and consequently exposure ages that are too old. Dating is only possible if samples do not contain any clay minerals or if they can be removed prior to carbonate dissolution.  相似文献   
14.
Elevated shorelines and lake sediments surrounding Issyk Kul, the world's second largest mountain lake, record fluctuating lake levels during Quaternary times. Together with bathymetric and geochemical data, these markers document alternating phases of lake closure and external drainage. The uppermost level of lake sediments requires a former damming of the lake's western outlet through the Boam gorge. We test previous hypothesised ice or landslide dam failures by exploring possible links between late Quaternary lake levels and outbursts. We review and recompile the chronology of reported changes in lake site, and offer new ages of abandoned shorelines using 14C in bivalve and gastropod shells, and plant detritus, as well as sand lenses in delta and river sediments using Infrared Stimulated Luminescence. Our dates are consistent with elevated lake levels between ~45 ka and 22 ka. Cosmogenic 10Be and 26Al exposure ages of fan terraces containing erratic boulders (>3 m) downstream of the gorge constrain the timing of floods to 20.5–18.5 ka, postdating a highstand of Issyk Kul. A flow‐competence analysis gives a peak discharge of >104 m3 s–1 for entraining and transporting these boulders. Palaeoflood modelling, however, shows that naturally dammed lakes unconnected to Issyk Kul could have produced such high discharges upon sudden emptying. Hence, although our data are consistent with hypotheses of catastrophic outburst floods, average lake‐level changes of up to 90 mm yr–1 in the past 150 years were highly variable without any outbursts, so that linking lake‐level drops to catastrophic dam breaks remains ambiguous using sedimentary archives alone. This constraint may readily apply to other Quaternary lakes of that size elsewhere. Nonetheless, our reconstructed Pleistocene floods are among the largest reported worldwide, and motivate further research into the palaeoflood hydrology of Central Asia. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
15.
Mean fields from a perpetual January simulation of a GCM extending from the surface to 0.01 hPa (near 80 km) are compared to observations. The zonal mean temperature and wind fields correspond quite well with reality; the low stratosphere, especially in the polar night, is too cold, but warmer than in the original version of the model, with an upper boundary at 25 hPa. Mean fields at standard levels show that the major features of the troposphere are represented by the model, but rather over emphasised; the stratospheric winter polar vortex is too strong, too cold, and too barotropic; it resembles an `undisturbed' January rather than the climatology. Differences in the stationary eddy activity between the extended and orginal versions of the model are noted, and used to explain some differences between the two simulations.This paper was presented at the International Conference on Modelling of Global Climate Change and Variability, held in Hamburg 11–15 September 1989 under the auspices of the Meteorological Institute of the University of Hamburg and the Max Planck Institute für Meteorology. Guest Editor for these papers is Dr. L. Dümenil  相似文献   
16.
Measurement of ecological, climatic and anthropogenic changes underpins the formulation of effective management strategies for sustainable use and protection of the marine environment. Sensors are traditionally used in marine studies to determine physical parameters, but there is increasing demand for real-time information about chemical and biological parameters. These parameters are currently measured in samples collected at sea and subsequently analysed in the laboratory. Biosensors fuse the exquisite sensitivity and specificity of living systems with the processing power of microelectronics to deliver simple, inexpensive measurement systems for use in the field or deployment in situ. While their potential for use in the marine environment is enormous, much published work to date has focussed on applications in freshwater and wastewater. Marine applications pose a substantial challenge in the robustness required for remote application, but recent developments in portable medical devices and receptor design suggest that these demands can now be realistically tackled.  相似文献   
17.
We have developed a procedure that allows extraction of clean nanodiamond samples from primitive meteorites for isotopic analyses of trace elements on a timescale of just a week. This procedure includes microwave digestion and optimization of existing isolation techniques for further purification. Abundances of trace elements that are difficult to dissolve using standard procedures (e.g., Ir) are lower in the diamond residues prepared using the new technique. Accelerator mass spectrometry (AMS) was explored as a means for isotopic measurements. Results obtained on diamond fractions from Allende and Murchison show the need for suitable matrix-adjusted standards to correct for fractionation effects; nevertheless they allow putting an upper limit on the abundance of 198Pt-H in nanodiamonds of ∼1 × 1014 atoms/g. This limit is on the order of what can be expected from predictions of competing nucleosynthesis models and extrapolation of the apparently mass dependent abundance trend of the associated noble gases.Unfortunately, and unexpectedly, presolar silicon carbide is almost quantitatively dissolved during microwave digestion with HCl/HF/HNO3. Re-evaluation of the standard extraction technique, however, shows that it also may lead to severe loss of fine-grained SiC, a fact not commonly appreciated. A lower limit to SiC abundance in Murchison is 20 ppm, and previous conclusions that Murchison SiC is unusually coarse-grained compared to SiC in other primitive meteorites seem not to be warranted. Graphite and silicon nitride may survive and possibly can be separated after this step as suggested by a simulation experiment using terrestrial analog material, but the detailed behavior of meteoritic graphite requires further study.  相似文献   
18.
A new high resolution sea-level curve for the Late Cenomanian M. geslinianum Zone has been generated using sequence stratigraphic analysis on transects through the margins of the Anglo-Paris Basin in the UK and Saxony Basin in Germany. Transgressive sediments that bury a rocky shoreline in the Dresden area have proved particularly useful in determining both the absolute amount of sea-level change and the rate of rise. After a brief fall at the base of the M. geslinianum Zone, sea level rose rapidly through the higher part of the zone, resulting in an overall short term eustatic rise of 22–28 m. Biostratigraphy and carbon isotope stratigraphy have enabled detailed correlations to be made between marginal locations and thick, relatively complete, basinal successions. The basinal successions at Eastbourne, UK, and Gröbern, Germany, provide both geochemical proxies for palaeoenvironmental change, including oxygen and carbon isotope records, and an orbital timescale graduated in precession and eccentricity cycles. Integration of the sea-level history with palaeoclimate evolution, palaeoceanography and changes in carbon cycling allows a detailed reconstruction of events during the Late Cenomanian. Orbital forcing on long eccentricity maxima provides the underlying drive for these changes, but amplification by tectonic events and feedback mechanisms augmented the orbital effects and made the Cenomanian/Turonian Boundary Event distinctive. In particular, variations in atmospheric CO2 caused by oceanic drawdown and a brief period of intense volcanic outgassing resulted respectively in short term cooling and warming events. The magnitude and high rates (up to 1 m/1 kyr) of sea-level rise are diagnostic of glacioeustasy, however improbable this may appear at the height of the Cretaceous greenhouse.  相似文献   
19.
20.
A total of 280 brachiopods of Ordovician to Cretaceous age, complemented by published data from belemnites and planktonic foraminifera, are used to reconstruct the evolution of calcium isotope composition of seawater (δ44/40CaSW) over the Phanerozoic. The compiled δ44/40CaSW record shows a general increase from ∼1.3‰ (NIST SRM 915a) at the beginning of the Ordovician to ∼2‰ at present. Superimposed on this trend is a major long-term positive excursion from the Early Carboniferous to Early Permian as well as several short-term, mostly negative, oscillations.A numerical model of the global cycles of calcium, carbon, magnesium and strontium was used to estimate whether the recorded δ44/40CaSW variations can be explained by varying magnitudes of input and output fluxes of calcium to the oceans. The model uses the record of marine 87Sr/86Sr ratios as proxy for seafloor spreading rates, a record of oceanic Mg/Ca ratios to estimate rates of dolomite formation, and reconstructed atmospheric CO2, discharge and erosion rates to estimate continental weathering fluxes.The model results indicate that varying magnitudes of the calcium input and output fluxes cannot explain the observed δ44/40CaSW trends, suggesting that the isotope signatures of these fluxes must also have changed. As a possible mechanism we suggest variable isotope fractionation in the sedimentary output flux controlled by the dominant mineralogy in marine carbonate deposits, i.e. the oscillating ‘calcite-aragonite seas’. The ultimate control of the calcium isotope budget of the Phanerozoic oceans appears to have been tectonic processes, specifically variable rates of oceanic crust production that modulated the hydrothermal calcium flux and the oceanic Mg/Ca ratio, which in turn controlled the dominant mineralogy of marine carbonates, hence the δ44/40CaSW. As to the causes of the short-term oscillations recorded in the secular δ44/40CaSW trend, we tentatively propose that these are related to variable rates of dolomite formation and/or to changing chemical composition of the riverine flux, in particular and ratios, induced by variable proportions of silicate vs. carbonate weathering rates on the continents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号